Macronutrients
Metabolism in
Exercise & Training
HNF 610: Nutrition & Fitness
Dr. Melissa Olfert
Fuel for Exercise

- The fuel mixture that powers exercise generally depends on:
 - The intensity of effort
 - The duration of effort
 - The exerciser’s fitness status
 - The exerciser’s nutritional status
The Energy Spectrum of Exercise

- ATP and PCr supply most of the energy for exercise.
- ATP-PCr and lactic acid systems provide $\frac{1}{2}$ of the energy required for intense exercise lasting 2 minutes.
 - Aerobic reactions provide the remainder of the required energy.
Aerobic Energy Transfer

- Intense exercise
- Intermediate in duration
- 5 to 10 minutes
- Examples:
 - Middle distance running
 - Swimming
 - Basketball
Aerobic Energy Transfer without Lactate

- Longer duration
- Requires a steady energy supply
- Examples:
 - Marathon running
 - Distance swimming or cycling
 - Jogging, hiking, or backpacking
Anaerobic Energy Transfer

- Supply energy for fast movements
- Supply energy during increased resistance to movement
- Short duration
- Example:
 - Sprinting
Sources of Energy for ATP Synthesis

- Sources of energy for ATP synthesis include:
 - Liver and muscle glycogen
 - Triacylglycerols within adipose tissue and active muscle
 - Amino acids within skeletal muscle donate carbon skeletons
Carbohydrate Use During Exercise

- Muscle glycogen and blood glucose serve as primary fuels during intense anaerobic exercise.
- Glycogen stores also play an important role in sustained high levels of aerobic exercise.
- The liver releases glucose for use by active muscle as exercise progresses from low to high intensity.
Carbohydrate Use During Exercise (cont.)

- Carbohydrate availability in the metabolic mixture controls its use.
- Carbohydrate intake affects its availability.
- Exercise intensity impacts to what degree glucose and glycogen are used as a fuel source.
Intense Exercise

- Change in hormone release
- Glycogen phosphorylase

Early in activity:
 - Stored muscle glycogen is the primary contributor.

As duration progresses:
 - Blood glucose from the liver increases its contribution.
Moderate and Prolonged Exercise

- First 20 minutes
 - Glycogen stored in active muscles
- Next 20 minutes
 - 40-50% liver and muscle glycogen
 - Remainder from fat breakdown
- As exercise continues
 - Glucose from the liver becomes major contributor
 - Fat use increases
Glycogen Depletion

- Blood glucose levels fall.
- Level of fatty acids in the blood increases.
- Proteins provide an increased contribution to energy.
- Exercise capacity progressively decreases.
Trained Muscle

- Trained muscle has an augmented capacity to catabolize carbohydrate aerobically for energy.
- Due to an increased oxidative capacity of the mitochondria and increased glycogen storage
- Greater fat use during submaximal exercise, less reliance on muscle glycogen and blood glucose
Gender Differences

- Women derive a smaller proportion of energy from carbohydrate oxidation than do men during submaximal exercise at equivalent percentages of aerobic capacity.
- Following aerobic exercise training, women show an exaggerated shift toward fat catabolism, whereas men do not.
Influence of Diet

- A carbohydrate-deficient diet rapidly depletes muscle and liver glycogen.
- Low carbohydrate levels profoundly affect both anaerobic capacity and prolonged, high-intensity aerobic exercise.
- When carbohydrates are low, exercise intensity decreases to a level determined by how well the body mobilizes and oxidizes fat.

MDOlfert, WVU, HNF 610
Influences of Diet

The following diets are counterproductive for weight control, exercise performance, optimal nutrition, and good health:

- Starvation diets
- Low-carbohydrate, high-fat diets
- Low-carbohydrate, high-protein diets
Fat as an Energy Substrate

- Fat supplies about 50% of the energy requirement during light and moderate exercise.
- Stored fat becomes more important during the latter stages of prolonged exercise.
- During prolonged exercise, fatty acids provide almost 80% of the energy requirements.
Sources of Fat During Exercise

- Fatty acids released from adipocytes
 - Delivered to muscles as FFA bound to plasma albumin
- Circulating plasma triacylglycerol bound to lipoproteins as very low density lipoproteins and chylomicrons
- Triacylglycerol within the active muscle itself
Lipolysis

- Hormones activate lipase.
 - These hormones are secreted more during exercise.
- Mobilization of FFAs from adipose tissue
- Trained muscle has an increased activity of adipose tissue lipases.
Hormones

- Hormones influence substrate:
 - Availability
 - Mobilization from body tissue stores
 - Uptake at tissue site of utilization
 - Uptake within tissue itself
 - Trafficking among storage, oxidation, and/or recycling
Exercise Training and Fat Metabolism

- Regular aerobic exercise:
 - Facilitates the rate of lipolysis
 - Increases the ability to oxidize long-chain fatty acids
 - Improves the uptake of FFAs
 - Increases muscle capillaries and the size and number of muscle mitochondria
Protein Use During Exercise

- Serves as an energy fuel to a much greater extent than previously thought
 - The amount depends upon nutritional status and the intensity of exercise training or competition.
 - This applies particularly to branched-chain amino acids that oxidize within skeletal muscle rather than within the liver.
Protein Use During Exercise (cont.)

- Exercise in a carbohydrate-depleted state causes significant protein catabolism.
- Protein synthesis rises markedly following both endurance- and resistance-type exercise.
Protein Requirements

- Re-examining the current protein RDA seems justified for those who engage in heavy exercise training.
- One must account for increased protein breakdown during exercise and the augmented protein synthesis in recovery.